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Propagation failure of an action potential wave at a finite distance from its source �so-called type-II block�
may cause spiral wave formation or wave breakup in the heart, phenomena that are believed to underlie lethal
and nonlethal heart rhythm disorders. In this study, we develop a sufficient condition for this type of block in
a homogeneous, spatially one-dimensional system. Using a topological argument, we find that type-II block of
a wave will always occur when launched within a finite range of times if the velocity of the trailing edge of the
preceding wave, as measured at the stimulus site, is smaller than the velocity of a wave launched with the
minimum diastolic interval �DI� for which propagation is possible. This “blocking condition” is robust, re-
maining valid even when memory and waveback electrotonic effects are included. The condition suggests that
type-II block is greatly facilitated when waves are initiated at irregular intervals in time such that �1� the
velocities of consecutive waves are as different as possible and �2� the DIs preceding each wave fall on the
steeply sloped portion of the action potential duration restitution curve as often as possible. The set of timing
intervals between stimuli that are predicted by the blocking condition to produce block are found to be
consistent with these guidelines, and also to agree well with a coupled-maps computer simulation model, for
the case of waves launched by four rapidly and irregularly timed stimuli.
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I. INTRODUCTION

Previous studies have shown that the failure or “block” of
a propagating cardiac action potential wave can lead to spiral
wave reentry in the heart, a dangerous condition that often
results in lethal cardiac rhythms such as ventricular fibrilla-
tion �e.g., Witkowski et al. �1�, Chen et al. �2��. Recently,
some researchers have focused their attention on block cre-
ated through the interactions that occur within a closely
spaced train of action potential waves as a method for study-
ing this behavior. In one such study, Fox et al. �3� showed, in
both a Purkinje fiber experiment and an ion channel based
mathematical model, that rapid, constant-interval pacing at
one end of the fiber can lead to block of some of the resulting
action potentials at some distance from the pacing site, a
phenomenon known as “type-II” block �to distinguish it from
type-I block, which is defined to occur in the immediate
vicinity of the stimulation site�. An intriguing pattern of ac-
tion potential wave propagation was observed to develop
prior to block in these studies. The pattern was identified as
“discordant alternans,” that is, alternations in wave morphol-
ogy from one action potential to the next that are out of
phase with one another at different points in space. Pastore
et al. �4� have also observed discordant alternans in guinea
pig ventricular muscle during constant pacing, seeing a
“long-short-long-short” pattern of action potential durations
�APDs�, while a “short-long-short-long” pattern appeared at
other locations. The discordant alternans pattern was found
to predispose the tissue to the formation of reentrant waves
and ventricular fibrillation upon slight acceleration of the
pacing frequency. The relationship of discordant alternans to
type-II block has led to recent theoretical and computational
studies. Watanabe et al. �5� developed a mathematical theory

for discordant alternans, and demonstrated that tissue hetero-
geneity is not required for its formation. Echebarria and
Karma �6� have constructed a partial differential equation
governing the amplitude of alternans in space, and used it to
explain several features of discordant alternans, including its
wavelength and characteristic length scales.

The phenomenon of alternans, and by implication, subse-
quent spiral wave breakup and fibrillation, has been linked to
the steepness of the slope of the APD restitution function,
that is, the function that relates the APD to the immediately
preceding diastolic interval �DI�. Alternans is readily pro-
duced when constant pacing is applied within a mathematical
model based on the APD restitution function when the slope
of the function is greater than 1 �7,8�. Karma �9� demon-
strated that, when the spiral wave rotation period was short
enough and the restitution function steep enough, alternans
in APD from one rotation of the spiral wave to the next often
leads to block of portions of the wave, resulting in spiral
wave breakup. A coupled maps simulation described by Fox
et al. �3� exhibited discordant alternans and subsequent block
when portions of the APD restitution function had slope
greater than 1. Garfinkel et al. �10� have shown that brety-
lium, an agent that flattens the restitution function, can con-
vert ventricular fibrillation back to ventricular tachycardia in
pig hearts. Clayton and Taggart �11� conducted computer
simulations showing how a spatial heterogeneity in the res-
titution function causes the block of a portion of a propagat-
ing wave, subsequent reentry, and breakup if the slope is
greater than 1. The steepness of the APD restitution function
is not, however, by any means the sole determinant of the
development of alternans and block; as discussed by Cherry
and Fenton �12�, electrotonic and short-memory effects are,
in general, important as well.

Recently, Fox et al. �13� extended these studies by apply-
ing simulation techniques directly to the occurrence of
type-II block created by a short series of rapid but irregularly
timed stimuli. The study again showed a correlation between*Electronic address: nfo1@cornell.edu
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a steep restitution function and the tendency for block to
occur. It then went on to determine which combinations of
timings of the irregularly spaced stimuli actually resulted in
block. Studies of block created through this process may be
more clinically relevant, because they serve as models of
short runs of rapid rhythm in the heart that often precede the
onset of ventricular fibrillation �VF�. Computer simulations
also have provided evidence that short and irregular timings
can develop between successive wavefronts of a rotating spi-
ral wave pattern through a number of different mechanisms,
leading to subsequent breakup of the wave �14�.

The purpose of the present study is to develop a math-
ematical theory that sheds light on what factors are important
in determining when type-II block occurs in this very impor-
tant situation of brief, irregular, rapid pacing. The theory
provides a general mechanism for block that may be useful
for predicting the patterns of premature beats that may be
especially dangerous in predisposing the heart tissue to the
development of ventricular tachyarrhythmias. The results
may also be useful in developing approaches to interrupt or
subvert such sequences and thereby prevent arrhythmia ini-
tiation. In Sec. II of this paper, we give our assumptions and
derive a sufficient condition for type-II block to occur. In
Sec. III we show how this blocking condition depends on
preceding data and on the APD and conduction velocity res-
titution functions. Section IV then applies these relationships
to the case of short runs of four premature stimuli. In Sec. V,
the resulting formula is used to predict which combinations
of time intervals among these stimuli will lead to block for a
number of different APD restitution functions. The predic-
tions are compared to results from our own coupled-maps
computer simulation, and to those of Fox et al. �13�. The
mechanism by which block occurs is discussed for each case.
We then briefly describe in Sec. VI how accounting for so-
called “memory” effects modifies our results. A discussion
and summary of the results are presented in Sec. VII.

II. CONDITION FOR TYPE-II BLOCK

A. Definitions and assumptions

Our description of the mechanism responsible for type-II
action potential propagation block is based on a formalism
previously employed by Courtemanche et al. �15� to describe
propagation of action potential waves in a ring, and also
more recently by Watanabe et al. �5�, Fox et al. �16�, and
Cain et al. �17� to a linear one-dimensional �1D� cable. The
formalism relies heavily on visualization of the action poten-
tials in t-x �time-space� coordinates. Accordingly, a brief dis-
cussion of the characteristics of traveling action potential
waves, as they appear in t-x space, would seem appropriate.

We will be considering propagation in one spatial dimen-
sion, x, with action potentials being launched from one end
of the system, which we label x=0, and propagating in the
positive x direction. The motion of the leading edge of the
nth wave, which we also refer to as the wavefront, or the
depolarization wave, is described by the time, td

n�x�, that the
wavefront passes through various locations x. The wave lasts
for a finite time once the wavefront passes. This time is
called the action potential duration �APDn�x�� and is repre-

sented by the vertical width of the action potential region in
t-x space shown in Fig. 1. Similarly, the locus of points in t-x
space marking the end of the nth action potential wave to-
gether represents the trailing edge of the wave, which we
will refer to as the repolarization wave tr

n�x�. �Technically,
this locus of points is not really a wave, but it is convenient
to think of it as a wave entity here, with a definite propaga-
tion velocity, etc.� At each point x in space, after repolariza-
tion occurs, a finite time elapses before the �n+1�st wave
arrives; this time is called the diastolic interval �DI�, with
duration DIn�x�. It is represented as the vertical width of the
gap between action potentials in Fig. 1.

The speed of the wavefront, or its “conduction velocity”
�CV�, is just 1 / �dtd

n /dx�, the inverse of the slope of the nth
wavefront as it appears in t-x space. Thus the faster a wave-
front travels, the flatter is its trajectory. Similarly, the slope
of the nth repolarization wave, dtr

n /dx, is the inverse of the
speed of the trailing edge of the wave.

We will make three assumptions in our analysis of this
system. First, we assume that the CV of the nth wave at any
location x depends on the preceding DI at that location,
DIn−1�x�. The wavefront speed is thus given by a function
v�DIn−1�x��, often referred to as the CV restitution function.
Second, we will make a similar assumption about the APD,
namely, that it is a function of the preceding diastolic interval
at the same location x; that is, APDn�x�=a�DIn−1�x��. Here,
a�DI� is known as the APD restitution function. Finally, we
will assume that propagation failure �action potential block�
of the nth wave occurs at a location x when it arrives at that
location with diastolic interval DIn−1�x� less than a specified
constant value, which we call DImin.

FIG. 1. Characteristics of action potential waves as plotted in
t-x space.
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B. Local condition for block

We can now characterize in a simple way how a particular
wavefront, say, the Nth wavefront, behaves, and potentially
blocks, as it follows on the tail of the �N−1�st wave. �We
will use the index N to refer specifically to the wave that
potentially blocks, while n is a generic index referring sim-
ply to the nth wave.� The propagation speed of any wave-
front passing through a given location x at a given time
DIN−1�x� later than the repolarization time tr

N−1�x� may be
denoted by a vector with slope 1/v�DIN−1�x��, as shown in
Fig. 2. The trajectory td

N�x� of the Nth wavefront must be
tangent to these velocity vectors everywhere along its length.

We note that all velocity vectors passing through a curve
of constant DIN−1�x� must by necessity have the same slope.
This is, in particular, true for the curve on which DIN−1�x�
=DImin. The orientation of these vectors relative to the slope
of this curve is the key to determining whether action poten-
tial block is possible at the corresponding space and time. If
the vector points into the region below the curve, the dias-
tolic interval preceding the Nth wavefront will fall below
DImin, immediately extinguishing the wave. All propagation
blocks occur in this manner in this system. The velocity vec-
tor will be oriented in this way when its slope is less than the
slope of the constant DIN−1=DImin curve, as should be clear
from Fig. 2. In turn, the slope of this curve is the same as the
slope of the repolarization wave at the same location. Thus,
when this slope dtr

N−1�x� /dx is greater than the velocity vec-
tor slope 1/v�DImin�, the action potential wave “runs into”
the slower-moving repolarization wave, and block of the ac-

tion potential wave occurs, as described previously by Qu
et al. �18�. We will refer to this condition,

dtr
N−1�x�/dx � 1/v�DImin� , �1�

as the “blocking condition” for the Nth wave to block at
location x.

C. Sufficient condition for block at-a-distance

The existence of segments of the DIN−1�x�=DImin curve
where the blocking condition holds does not necessarily
mean that the Nth wave launched from the stimulus site at
x=0 has a chance of blocking. Wave trajectories originating
at x=0 still must find their way to the segment of the curve
on which the condition holds. Such trajectories do not al-
ways exist, as illustrated in Fig. 3. Here, a region satisfying
the blocking condition exists, but when the trajectories ter-
minating in this region are traced backwards, they are found
to originate on the DIN−1�x�=DImin curve, and thus are not
generated at the stimulus site. Action potentials actually
launched from the stimulus site enter the region where the
condition is satisfied with large enough DIs to bypass the
region, and thus do not block. This shows that the mere
existence of a region satisfying the condition somewhere in
the system is not sufficient to guarantee that stimuli launched
from a specified location will block.

There is, however, an important case for which type-II
wave block is guaranteed. As illustrated in Fig. 4, if the
stimulus site itself is included inside one of the segments in
which the blocking condition �1� holds, then the existence of
a set of trajectories launched from that site that block at some
finite distance into the tissue is assured. We can see this from
a simple topological argument. If we start from any point
along the segment of the curve satisfying the blocking con-

FIG. 2. Orientation of velocity vectors for possible trajectories
of the Nth wavefront at different times and locations following the
repolarization of the �N−1�st wave. Dashed lines are contours of
constant DIN−1�x�, including the contour of DIN−1�x�=DImin. The
slopes of all vectors on a given constant-DIN−1 contour are the same
�despite an optical illusion that may suggest the contrary�, since the
slopes are just the inverse velocities, which are in turn functions of
DIN−1.

FIG. 3. �Color online� Illustration showing that type-II block
can fail to occur even though dtr

N−1�x� /dx�1/v�DImin� in a region
away from the stimulus site.
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dition and trace the trajectory �shown in red in Fig. 4� that
extinguishes at that point backwards �i.e., to the left in the
figure� to its origin, we see that it has no choice but to hit the
t axis where x=0, implying that it had to have been launched
from x=0. The trajectories could not have originated from
some point on the DIN−1�x�=DImin curve, the only other pos-
sibility, because all such points to the left of the point of
extinction of the trajectory have their velocity vectors point-
ing into rather than out of the DIN−1�DImin region.

In turn, a finite segment of the DIN−1�x�=DImin curve
around the stimulus site will always satisfy the blocking con-
dition if the stimulus site itself satisfies the condition, as long
as dtr

N−1�x� /dx is continuous. We have shown, therefore, that
if the repolarization wave of the �N−1�st action potential
satisfies the blocking condition dtr

N−1 /dx�1/v�DImin� spe-
cifically at the stimulus location, then the Nth action poten-
tial will always exhibit type-II block if launched with a DI
between DImin and some larger value.

We note that, while satisfying the blocking condition at
the stimulus site is sufficient to yield type-II block, it is not
necessary. Figure 5 illustrates the point. We see that it is still
possible for block to occur even though the blocking condi-
tion is not satisfied at the stimulus site. In this case, action
potentials launched at the stimulus site manage to find a
distant region where the blocking condition is satisfied.

III. DEPENDENCE OF TYPE-II BLOCK ON ACTION
POTENTIAL AND CONDUCTION VELOCITY

RESTITUTION

We can determine when the blocking condition will be
satisfied at the stimulus site by developing relationships be-

tween the slope of the repolarization wave dtr
N−1 /dx and the

slopes of preceding waves. Relationships of this type have
been used previously �17–19�. Here we repeat the calculation
briefly using a simple geometric argument.

In general, for any series of waves, we can evaluate the
relationships between the slopes of the depolarization and
repolarization times of the waves by considering the change
in these quantities over a small spatial interval �x. As de-
picted in the upper portion of Fig. 6, the change in time of
repolarization tr

n�x� of the nth action potential between x=0
and x=�x is a convenient measure of the slope tr

n at x=0,
being equal to �dtr

n /dx��x. This change in time is composed
of two components.

The first component is the change in time of repolariza-
tion of the nth action potential over distance �x that would
have resulted if the APD had not changed over that same
distance. If that were the case, then the trailing edge of the
nth action potential would have had the same slope as the
leading edge, namely, 1 /v�DIn−1�, resulting in a change in
time of �1/v�DIn−1���x, as shown in the figure. The second
component is an adjustment to the first that takes into ac-
count the fact the APD actually does change over the dis-
tance �x. Mathematically this change may be written as
�dAPDn /dx��x. Consequently, we find that

dtr
n

dx
=

1

v�DIn−1�
+

dAPDn

dx
. �2�

With an analogous argument, we can see from the lower
portion of Fig. 6 that the slope of a given wavefront is also
related to the slope of the trailing edge of the preceding wave
through the formula

1

v�DIn�
=

dtr
n

dx
+

dDIn

dx
, �3�

where we have substituted n for n−1 in the notation in the
figure �possible since the argument applies generally to all
propagating waves�.

FIG. 4. �Color online� Illustration showing that a certain number
of trajectories of the system must exhibit type-II block if
dtr

N−1 /dx�1/v�DImin� at the stimulus site, here located at the left
edge of the system.

FIG. 5. �Color online� Illustration of how block can still occur
even though dtr

N−1�x� /dx�1/v�DImin� at the stimulus site.
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By now evaluating Eq. �2� at n=N−1, subtracting
1/v�DImin� from both sides and making use of the chain rule,
we obtain the following expression:

dtr
N−1

dx
−

1

v�DImin�
=

1

v�DIN−2�
−

1

v�DImin�
+ a��DIN−2�

dDIN−2

dx
.

�4�

When this expression is positive at the stimulus site, the
blocking condition is satisfied there, and thus block at-a-
distance of the Nth action potential for some range of DIs
above DImin is assured. Here a��DI� is the derivative of the
APD restitution function with respect to DI.

We find another useful relation by subtracting off
1 /v�DIn� instead of 1/v�DImin� from both sides of Eq. �2�.
Substituting Eq. �3� we obtain

dDIn

dx
=

1

v�DIn�
−

1

v�DIn−1�
− a��DIn−1�

dDIn−1

dx
. �5�

This equation shows how dDI/dx is related to its previous
value. The relationship is important, because it gives us a
means to determine how the last term in Eq. �4� depends on
the dynamics of preceding action potential waves.

IV. GENERATION OF TYPE-II BLOCK USING
PREMATURE STIMULI

One protocol by which type-II block can be produced is to
first apply a series of stimuli �called S1 stimuli� at relatively

long, constant intervals, and then follow up with a small
number of stimuli �labeled S2,S3,S4 ,S5 , . . .� applied at
shorter, irregular intervals. Here we look specifically at the
case in which stimuli up to S5 are applied. The use of other
numbers of premature stimuli are, of course, possible. We
use the four premature stimuli S2 through S5, a large enough
number to give a flavor for what types of dynamics are pos-
sible, while small enough to yield manageable calculations.
Additionally, the use of these four premature stimuli allows
us to make direct comparisons to previous work.

The S1 stimuli are assumed to be applied with an inter-
stimulus interval long enough to avoid the appearance of
alternans �that is, the alternation of APD from one stimulus
to the next�. In the absence of alternans, the train of gener-
ated action potential waves settles down to a time-
independent �i.e., 1:1� and spatially uniform pattern. Thus,
for n large enough, APDn�x��APDSS, where APDSS is a
constant steady state value. Similarly, DIn�x� settles down to
a constant value DISS and the conduction velocity settles
down to a steady state velocity v�DISS�.

Once the pattern of action potentials has settled, the first
premature stimulus S2 is delivered with a much shorter di-
astolic interval, DIS2�DISS. �Note that, here and below,
DISk for k=2 through 5, is the DI preceding the Skth stimu-
lus. See Fig. 7 for definitions.� Applying Eq. �4� to the repo-
larization wave of the last S1 action potential, we obtain that
the blocking condition for block of the S2 action potential is
satisfied when

FIG. 6. Geometrical relationship between the wave back slope
dtr

n /dx and wavefront slope 1/v�DIn−1� �upper portion of figure�,
and between the wavefront slope 1/v�DIn−1� and the preceding
wave back slope dtr

n−1 /dx �lower portion� based on the differences
in the quantities DIn−1 and APDn evaluated a small distance �x
apart.

FIG. 7. �Color online� Definitions and space-time relationships
among the quantities DIS2 through DIS5, APDS1=APDSS through
APDS5, CLS2 through CLS5, the last S1 stimulus, and stimuli S2
through S5, as they appear in x-t space. Also shown are the func-
tions defined for following the leading and trailing edges of selected
waves.
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dtr
S1

dx
−

1

v�DImin�
=

1

v�DISS�
−

1

v�DImin�
�6�

is positive at the stimulus site. Here, tr
S1�x� defines the repo-

larization times of the last S1 action potential wave.
We can derive the blocking condition for S3 through S5

by repeated substitution of Eq. �5� into Eq. �4� evaluated for
the repolarization waves of S2 through S4. All quantities are
evaluated at the stimulus site. We find that a range of S3
waves will exhibit type-II block when

dtr
S2

dx
−

1

v�DImin�
= � 1

v�DIS2�
−

1

v�DImin�
�

− a��DIS2�� 1

v�DISS�
−

1

v�DIS2�� �7�

is positive. Similarly, we find that a range of S4 waves will
encounter type-II block when the following quantity is posi-
tive:

dtr
S3

dx
−

1

v�DImin�
= � 1

v�DIS3�
−

1

v�DImin�
�

− a��DIS3�� 1

v�DIS2�
−

1

v�DIS3��
+ a��DIS3�a��DIS2�� 1

v�DISS�
−

1

v�DIS2�� ,

�8�

and that a range of S5 waves will exhibit type-II block when

dtr
S4

dx
−

1

v�DImin�
= � 1

v�DIS4�
−

1

v�DImin�
�

− a��DIS4�� 1

v�DIS3�
−

1

v�DIS4��
+ a��DIS4�a��DIS3�� 1

v�DIS2�
−

1

v�DIS3��
− a��DIS4�a��DIS3�a��DIS2�

�� 1

v�DISS�
−

1

v�DIS2��
� b�DIS2,DIS3,DIS4� , �9�

is positive at the stimulus site. The right-hand side of Eq. �9�
is defined to be the function b�DIS2 ,DIS3 ,DIS4�, for use later.

Each of these equations has a similar physical interpreta-
tion, which we explain using Eq. �9� as an example. The first
term on the right-hand side accounts for the difference in
velocities between the S4 wavefront v�DIS4� and a hypotheti-
cal S5 wavefront that is launched so as to trail the S4 wave
as closely as possible �that is, launched with DI=DImin so
that its velocity is v�DImin��. If the trailing edge of the S4
wave were traveling at the same velocity �v�DIS4�� as its
wavefront, it is clear intuitively that the S5 wave would im-
mediately run into it if v�DImin��v�DIS4�. This is consistent
with the sign of this first term, which would be positive for

this case, implying that block would occur, were it not for the
presence of the remainder of terms on the right-hand side.
The trailing edge of S4, does not, however, actually move
with the same velocity as the leading edge, because of the
variation of APD of the wave in space. This is just the effect
accounted for by these remaining terms, which, from the
derivation of Eq. �9�, or through direct comparison of Eq. �9�
with Eq. �4�, are equal to dAPDS4/dx. Furthermore, the form
of these remaining terms shows that this gradient in APD
results from the dynamics of previous waves, as character-
ized by their different propagation speeds and APD restitu-
tion slopes.

The blocking properties of waves generated by this stimu-
lus protocol, as characterized by Eqs. �6�–�9�, can be divided
naturally into two categories, depending on whether the con-
duction is “normal” for all values of DI �i.e., v��DI��0 for
all DI�, or “supernormal” for some values of DI �i.e.,
v��DI��0 for some DIs�. In the case of normal conduction,
we must always have v�DImin��v�DI� for all other values of
DI�DImin. This means that the first term on the right-hand
side of Eqs. �6�–�9� is always negative or zero. Since there
are no other terms on the right-hand side of Eq. �6�, this
implies that the S2 wave can never block under conditions of
normal conduction. In the other equations, the remaining
terms must create a positive spatial gradient in APD to create
block.

The forms of Eqs. �7�–�9� thus suggest two kinds of pat-
terns of stimulus intervals that tend to promote block in the
case of normal conduction. Both patterns work by minimiz-
ing the magnitude of the negative first term on the right-hand
side, while simultaneously making the remaining terms on
the right-hand side as positive as possible. Again taking Eq.
�9� as an example, the first pattern takes advantage of the fact
that the last three terms are alternately added and subtracted.
All three terms will then be positive if the CV of the last S1
wave v�DISS�, and the CVs of S2 through S4, alternate in
magnitude so that the sign of the factor involving the CVs in
each of these three terms also alternates. Specifically, all
three terms will be positive if the S1S2, S2S3, and S3S4
stimulus intervals are chosen so that DIS2�DISS, DIS3
�DIS2 and DIS4�DIS3, assuming a�DI� is a monotonically
increasing function �which is typical�. Choosing the S3S4
stimulus interval so that DIS4 is small also minimizes the
magnitude of the first term. Assuming, as is typical, that the
range of DIS5s for which block occurs is relatively small, this
condition corresponds to the “short, long, short, short” pat-
tern described previously �13�, where “short” and “long” re-
fer to the magnitude of the four diastolic intervals, DIS2
through DIS5.

A second pattern of DIs that tends to yield type-II block
during normal conduction takes advantage of the product of
one or more factors of a��DI� that appears in each of the last
three terms. These terms will tend to be larger in magnitude,
therefore, if as many of DIS2, DIS3 and DIS4 can be chosen to
fall on the steepest part of APD restitution function as pos-
sible. In general, these two strategies cannot be optimized by
the same set of DIS2, DIS3, and DIS4; thus some compromise
with respect to one or both strategies is needed to produce
the highest likelihood of block.
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The forms of Eqs. �6�–�9� allow us to make other obser-
vations. When the portion of the APD restitution function
used has slope greater than 1, then the most important term
in Eq. �9� is generally the last one, since it contains three
factors of the slope. It is natural under these circumstances to
think of the three slopes a��DIS2�, a��DIS3�, and a��DIS4� as
amplification factors, magnifying the disparity in inverse ve-
locities associated with consecutive action potentials. The
implication is that, when the slopes are greater than 1, the
likelihood of block is substantially enhanced when multiple
stimuli are applied, even if the initial disparity in conduction
velocities between consecutive beats is small.

In contrast, when the APD restitution function slope is
less than 1, the first two terms in Eq. �9� become the impor-
tant terms. If block is to occur in this case, v�DIS4� should be
as close to v�DImin� as possible, and a��DIS4� should be as
large as possible. We also note that, when the APD restitution
function slope is less than 1, it is just as feasible to try to
create type-II block on the S3 action potential �see, Eq. �7��,
in this case, choosing DIS2 carefully in analogous fashion.
Both cases demonstrate that type-II block is possible even if
the APD restitution function has slope less than 1, although
perhaps less likely, since the process producing block is no
longer helped by the amplification mechanism described
above.

When the CV restitution function contains intervals of
supernormal conduction �where v��DI��0�, the situation is
more complicated. In this case, v�DImin� is no longer neces-
sarily the smallest of all possible velocities. This makes it
possible for the wavefront of a wave following just behind
another �and thus moving at a velocity near v�DImin�� to be
traveling faster than the wavefront of the wave it is trailing.
This possibility is reflected in the first term on the right-hand
sides of Eqs. �6�–�9�, which now may be of either sign. We
therefore observe that, when the wave in front is traveling
slower than v�DImin�, the trailing wave will now crash into
the wave it is following and block, unless dynamics creating
the spatial gradient in APD prevents this collision. In particu-
lar, the S2 wave, whose governing equation �6� contains no
dynamics associated with APD restitution, will always block
if launched with a small enough DI, provided the velocity of
the S1 wave v�DISS� is slower than v�DImin�. Other terms on
the right-hand sides of Eqs. �7�–�9� may also be opposite in
sign from their counterparts during normal conduction,
which then substantially changes the sets of S2–S5 intervals
that cause type-II block. Since supernormal conduction is
less common, we will not treat it further here, except to note
that Eqs. �2�–�9� remain valid for this case, and thus can be
used in its study.

V. COMPARISON TO A COUPLED MAP MODEL

A. The simulation model

To test the validity of the blocking condition, we com-
pared the predictions described above to the pattern of blocks
produced by the repeated running of a spatially one-
dimensional coupled maps computer simulation. Four differ-
ent APD restitution functions were combined with the same

CV restitution function to form four “models” on which we
conducted our tests. The CV restitution function in common
to all four models was the one employed by Fox et al. �13�,
namely,

v�DI� = 0.72�1 − e−�DI+17.408�/14.0� . �10�

As shown in Fig. 8, the conduction is velocity is constant
until the DI falls below about 50 ms where it decreases with
decreasing DI.

Model No. 1 calculated APD restitution with the function

a�DI� = 60 +
150

1 + e−�DI−30�/28 , �11�

shown in Fig. 9�a�. The slope of the function a��DI� is
greater than 1 for DI�61 ms, and flattens out for larger DI.

Model No. 2 employed an APD restitution function of the
form

a�DI� = 110 +
100

1 + e−�DI−30�/28 , �12�

which has a slope less than 1 for all DI, as shown in Fig.
10�a�.

The APD restitution function employed by model No. 3
took a different form

a�DI� =
f1e�DI−52�/15 + f2e−�DI−52�/15

e�DI−52�/15 + e−�DI−52�/15 , �13�

where

f1 = 225 − 118e−DI/115, �14�

f2 = 92 + 10e�DI−70�/40. �15�

As shown in Fig. 11�a�, the function is steep over an inter-
mediate range of DIs, with slope greater than 1 for 39 ms
�DI�72 ms, and is fairly flat near DI=0.

Model No. 4 employed the same APD restitution function
as that used by Fox et al. �13�; namely,

FIG. 8. Conduction velocity restitution function used in all four
models.
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a�DI� = 88 +
122

1 + e−�DI−40�/28 , �16�

as shown in Fig. 12�a�. This allowed direct comparison with
the default model appearing in Fox et al. �13�.

The coupled maps simulations we used here were simpli-
fied versions of those employed by Fox et al. �13� in that
they included no memory or electrotonic effects to create the
simplest possible situation. The simulations consisted of a
series of 330 “cells” arranged in a line. Dynamical variables
for each cell j �j=0,1 , . . . ,329� were updated with the pas-

FIG. 9. �Color online� Model No. 1: �a� APD restitution function and its slope, a��DI�. The slope is greater than 1 in the region shaded
in gray �0�DI�61 ms�. �b� Colorplot of the number of type-II blocks of the S5 wave as a function of the values of DIS2, DIS3 and DIS4

relative to DImin obtained from coupled-maps simulations of the Model No. 1 APD and CV restitution functions. �c� Values of
b�DIS2 ,DIS3 ,DIS4�, plotted only when positive as colored points, as functions of DIS2, DIS3 and DIS4 �relative to DImin�. �d� Trajectories of
the leading and trailing edges of the last S1 action potential wave, and the S2, S3, S4 and S5 action potential waves, for stimuli timed to yield
the following DIs at the stimulus site: DIS2=DImin, DIS3=DImin+54 ms, DIS4=DImin, and DIS5=DImin+4 ms. The trajectories are shown as
plots of the functions td�x� and tr�x�, the times of passage of the depolarizing and repolarizing edges of each wave, as functions of the
location x.
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sage of each action potential wave as follows:

APDn�xj� = a�DIn−1�xj�� , �17�

CLn�xj� = CLn�0� + 	
k=1

j−1

�x/v�DIn�xk�� − 	
k=1

j−1

�x/v�DIn−1�xk�� ,

�18�

DIn�x� = CLn�x� − APDn�x� , �19�

where xj = j�x is the location of the jth cell, CLn�xj� is the
time interval �the “cycle length”� between the nth and �n
+1�st action potential wavefronts at location xj, and �x
=0.1 mm is the spacing between adjacent cells. The stimulus
was applied in the 0th cell located at x0=0. The two sums in

Eq. �18� give the times required for the �n+1�st and nth
wavefronts, respectively, to reach the cell located at xj−1.
These two times appear in the equation for CLn because
differences in CVs of the two wavefronts modify the cycle
length as the two waves travel down the system. Equations
�17�–�19� were evaluated one action potential at a time, start-
ing with the cell at the stimulus location x0=0 and proceed-
ing away from the stimulus location: x1 , x2 , . . . . The nth
wave was assumed to block at a location xj when DIn−1�xj�
was found to be less than DImin. DImin was chosen to be 2 ms
to allow direct comparison to the results of Fox et al. �13�.

All simulations were initialized with DI0�xj�=DI, where
DI is the steady state value of DI when the cycle length
CL=1000 ms �i.e., DI is the solution to DI+a�DI�=1000�.
The simulations were then paced for ten periods with a pac-
ing interval of 500 ms. These ten stimuli are the S1 stimuli

FIG. 10. �Color online� Model No. 2: �a� APD restitution function and its slope, a��DI�. Note that the slope is always less than 1. �b�
Values of b�DIS2 ,DIS3 ,DIS4�, plotted only when positive as colored points, as functions of DIS2, DIS3 and DIS4 �relative to DImin�. �c�

DISi�x�−DISi�0�
 �labeled �DISi� and 
APDSi�x�−APDSi�0�
 �labeled �APDSi� vs x for i=2,3 ,4, for stimuli chosen so that DIS2=DImin,
DIS3=DImin+50 ms and DIS4=DImin+1 ms. Circles, X’s, and triangles denote quantities associated with stimuli 2, 3 and 4, respectively. The
�DI quantities are shown as red, dashed lines; the �APD quantities as green solid lines.

THEORY OF ACTION POTENTIAL WAVE BLOCK AT-A-… PHYSICAL REVIEW E 75, 021910 �2007�

021910-9



referred to earlier. Examination of action potential waves
generated by the last two of these ten stimuli showed that the
waves had settled down into the steady state associated with
a pacing interval of 500 ms; i.e., DI�x�=DISS, APD�x�
=a�DISS�, and v�DI�x��=v�DISS� independent of x and con-
stant from one action potential to the next.

A search algorithm �20� was used to run the simulation
repeatedly and report when blocks occurred. The algorithm
ran a very large number of simulations �thousands� with dif-
ferent values of CLS2, CLS3, CLS4, and CLS5, where CLS2 is
defined to be the time interval between the last S1 stimulus
and the first premature stimulus S2 at the stimulus site, and
the remaining CLs were defined consecutively �see Fig. 7�.
The algorithm included some “smart” features that allowed it
to skip over large regions of �CLS2 ,CLS3 ,CLS4 ,CLS5� space

that were known not to contain type-II blocks. Details of the
algorithm appear in the Appendix.

B. Results for model No. 1: Steep APD restitution

The quantity b�DIS2 ,DIS3 ,DIS4� appearing in Eq. �9� is a
measure of the difference between the �inverse� velocity of
the trailing edge of S4 and a hypothetical S5 wavefront fol-
lowing immediately behind it, with DIS5=DImin. Since b
�0 is a sufficient condition for the existence of a set of S5
waves that block, the set of �DIS2 ,DIS3 ,DIS4� combinations
satisfying the condition b�0 should be a subset of those that
produce type-II block in the coupled maps simulations. Fur-
thermore, if situations of the type depicted in Fig. 5 do not
occur, the two sets should be identical. We also observe that,

FIG. 11. �Color online� Model No. 3: �a� APD restitution function, designed to flatten out at short DIs. The slope of this function is
greater than 1 in the gray region �39 ms�DI�72 ms�. �b� Values of b�DIS2 ,DIS3 ,DIS4�, plotted only when positive as colored points, as
functions of DIS2, DIS3 and DIS4 �relative to DImin�. �c� Trajectories of the leading and trailing edges of the last S1 action potential wave and
the S2, S3, S4 and S5 action potential waves, for stimuli timed to yield the following DIs at the stimulus site: DIS2=DImin+2 ms, DIS3

=DImin+58 ms, DIS4=DImin+42 ms, and DIS5=DImin+4 ms. The trajectories are shown as plots of the functions td�x� and tr�x�, the times of
passage of the depolarizing and repolarizing edges of each wave, as functions of the location x.
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the more positive b is, the slower the trailing edge of S4
moves compared to the hypothetical S5 wavefront. This
makes it easier for the S5 wave to catch up with and block on
the S4 trailing edge. Consequently, we expect there to be a
correlation between the magnitude of b, when positive, and
the range of DIS5 values that cause type-II block of S5.

To test these assertions, we programmed our search algo-
rithm to tabulate the total number of type-II blocks occurring
in model No. 1 coupled-maps simulations for each combina-
tion of CLS2, CLS3, and CLS4 or, equivalently, for each com-
bination of �DIS2 ,DIS3 ,DIS3� appearing at the stimulus site
resulting from a given combination of �CLS2 ,CLS3 ,CLS4�.
The results appear in Fig. 9�b�. The data are displayed as a
large number of colored dots in three-dimensional parameter

space—one for each combination of �DIS2 ,DIS3 ,DIS4� �rela-
tive to DImin� that results in at least one instance of block.
The color of each dot then indicates the number of blocks
that occurred for that combination. We then plotted the val-
ues of b�DIS2 ,DIS3 ,DIS4�, when positive, as colored dots in
the same �DIS2 ,DIS3 ,DIS4� coordinate system, as shown in
Fig. 9�c�.

As expected, the shapes of the regions filled with colored
dots are very similar in the two plots. In both plots, the filled
region has a peak-like structure located in the same place in
the three-dimensional �DIS2 ,DIS3 ,DIS4� volume. The widths
of the peak-like structure are essentially the same in the two
plots, with the half-width in the DIS2 direction, 8 ms, being
much smaller than the half-widths in the other two directions

FIG. 12. �Color online� Model No. 4: �a� APD restitution function, also used in �13�, and its slope, a��DI�. The slope is greater than 1 in
the gray-shaded region. �b� Number of type-II blocks for various combinations of CLS2 and CLS3 �referred to as S2 and S3, respectively, in
the plot� produced by the coupled-maps simulations from the study of �13� �reproduced with permission�. �c� Colorplot of the number of
�CLS4 ,CLS5� cycle length combinations that produced type-II action potential block in our coupled-maps simulations vs. the stimulus cycle
lengths CLS2 and CLS3. �See Appendix for detailed definitions.� Type-I block of the S3 wave occurs for the �CLS2 ,CLS3� combinations
located in the triangular white region at the bottom of the plot. �d� Colorplot of the quantity B�DIS2 ,DIS3� vs. DIS2−DImin and DIS3

−DImin.
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�40 ms�. Additionally, the region containing the largest num-
ber of blocks per �DIS2 ,DIS3 ,DIS4� combination �the red re-
gion in Fig. 9�b�� also approximately coincides with the re-
gion of maximum b �the red region in Fig. 9�c��, although
the maximum occurs at slightly different points
�DIS2 ,DIS3 ,DIS4�=DImin+ �0,52,0� ms in the former, vs.
DImin+ �0,40,0� ms in the latter. The discrepancy may be
explained by noting that the magnitude of b is predicted to be
correlated, but not necessarily functionally related, to the
number of type-II blocks.

We note that the pattern of DIs that corresponds to the
maximum in both plots is consistent with the form of Eq. �9�;
that is, the values of DIS2 through DIS5 follow the short-long-
short-short pattern in both cases, as expected. This pattern is
particularly effective in maximizing the quantity
b�DIS2 ,DIS3 ,DIS4�, since the slope of the APD restitution
function is greater than 1 over a large range of DIs �the gray
region in Fig. 9�a��, including the entire range over which the
CV restitution function varies �DI between 0 and about
40 ms�. Thus, choices for �DIS2 ,DIS3 ,DIS4� such as DImin

+ �0,40,0� ms or DImin+ �0,52,0� ms yield large, positive
values for all three slopes of relevance, a��DIS2�, a��DIS3�,
and a��DIS4�, and near maximally large changes in succes-
sive inverse velocities, 1 /v�DISS�, 1 /v�DIS2�, 1 /v�DIS3�, and
1/v�DIS4�. This minimizes the magnitude of the lone nega-
tive term in the expression appearing in Eq. �9� �the first
term� and makes positive and maximizes the other three
terms.

Examination of the trajectories of the last S1 wave and the
S2 through S5 waves for a typical set of DI values taken
from the peak region in Fig. 9�b� shows that the behavior of
the individual propagating waves is as expected. As shown in
Fig. 9�d�, the small value of DIS2 at the stimulus site at x
=0 causes slow propagation of the leading edge of the S2
wave, which produces a widening gap between it and the
trailing edge of the S1 wave as the S2 wave propagates left
to right, thus creating a positive gradient in DIS2. This gra-
dient is amplified by the steep slope of the APD restitution
curve, resulting in a longer S2 wave APD on the right side of
the system than on the left. The trailing edge of the S2 wave
thus travels even more slowly than the S2 leading edge. The
large value of DIS3 creates a rapidly propagating S3 leading
edge. The convergence of the S2 trailing edge with the S3
leading edge produces a large negative gradient in DIS3 in
space.

We can also express the mechanism leading to this nega-
tive gradient in slightly different terms. The small value of
DIS2 and large value of DIS3 produce, respectively, a slowly
propagating S2 leading edge, and a rapidly propagating S3
leading edge. As a result, the time spacing between the two
leading edges must be narrowing from left to right, although
it is not particularly obvious in Fig. 9�d�. This narrowing
space is partially filled with the S2 action potential, which is
widening from left to right, due to a positive gradient in DIS2
amplified by the steep slope in the restitution curve at small
values of DIS2. The two effects, the narrowing gap between
the S2 and S3 leading edges caused by the difference in S2
and S3 leading edge propagation velocities, and the widening
of the S2 action potential, cause the gap between the trailing

edge of S2 and leading edge of S3 to narrow quite substan-
tially from left to right, implying a strong negative gradient
in DIS3.

We observe that these two effects are exactly those ex-
pressed mathematically by Eq. �5� when DIn=DIS3. The
equation shows that the gradient in DIS3 �i.e., the left-hand
side of Eq. �5�� is affected by two quantities. The first is the
difference in S2 and S3 leading edge inverse velocities, the
first two terms on the right-hand side of Eq. �5�, which will
be nonzero anytime the S2 and S3 leading edge velocities are
different. The second quantity is the third term on the right-
hand side, which expresses the gradient in the S2 APD as
a��DIS2�, the slope of the APD restitution function at DIS2,
times the gradient in the previous DI, DIS2.

This same mechanism, with all the polarities reversed,
creates the widening of the gap between the S3 wave trailing
edge and the S4 wave leading edge, corresponding to a posi-
tive spatial gradient in DIS4. This gradient, in turn, is ampli-
fied by the steep slope of the APD restitution relation at short
DIs such as DIS4 to produce a large positive gradient in the
S4 APD. Finally, this positive APD gradient, combined with
the slow propagation speed of the S4 leading edge, causes
the trailing edge of the S4 wave to travel very slowly, allow-
ing the S5 wave to catch up and crash into it. We note that
the mechanism by which S5 type-II block occurs is that de-
picted in Fig. 4, and is thus the one assumed by our theory.
Specifically, we observe that dtr

S5 /dx�1/v�DImin� for all
values of x between 0 and the point at which block of the S5
wave occurs.

C. Results for model No. 2: Shallow APD restitution

Type-II block is still possible when the slope of the APD
restitution curve is everywhere less than 1, as illustrated us-
ing model No. 2 �Fig. 10�a��. As shown in Fig. 10�b�, block
is again predicted to occur when four premature stimuli are
delivered so as to create a short-long-short-short pattern of
DIs at the stimulus site. Application of the coupled-maps
simulation to model No. 2 yields a pattern of block in
�DIS2 ,DIS3 ,DIS4� parameter space �not shown� as similar to
Fig. 10�b� as Fig. 9�c� was to Fig. 9�b�.

The mechanism by which block occurs may be explained
through an examination of the gradients of the DIs and APDs
of S2, S3 and S4 obtained from the coupled-maps simula-
tion. We use the case of premature stimuli delivered with
DIS2=DImin, DIS3=DImin+50 ms, and DIS4=DImin as an ex-
ample. This combination of DIs falls in the red region in Fig.
10�b� and is thus a reasonable representative of the process
by which block is created in model No. 2. In Fig. 10�c� are
plotted DIS2, APDS2, DIS3, APDS3, DIS4, and APDS4 as func-
tions of x. Each of the quantities is plotted as the absolute
value of its departure from its value at the stimulus site at
x=0, to simplify the comparison of their slopes. We observe
that 
dAPDi /dx 
 � 
dDIi /dx
 for each of the premature action
potentials i=2,3 ,4, as expected, since a��DI� is everywhere
less than 1. Nevertheless, we still have 
dAPD4/dx 

� 
dAPD3/dx 
 � 
dAPD2/dx
, owing to the fact that more
terms involving differences between inverse conduction ve-
locities appear in the expressions for dAPD/dx for the later
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action potentials. This additive effect is large enough to com-
pensate for the fact that each of these differences is being
multiplied by more and more factors of the APD restitution
function slope, each of which is less than 1. The resulting
value of dAPD4/dx slows down the trailing edge of the S4
wave below the critical velocity of v�DImin�, allowing the S5
wave to run into it and block. Block is in fact possible for
this combination of �DIS2 ,DIS3 ,DIS4� for DIS5 as large as
DImin+8 ms.

D. Results from model No. 3: S-shaped APD
restitution function

Our theory also shows that type-II block can occur with
other patterns of DIS2 through DIS5 other than short-long-
short-short. For example, if the APD restitution function is
flattened at very short DIs, but steepened at intermediate DI,
as in model No. 3 �Fig. 11�a��, we find that type-II blocking
of the S5 wave occurs as depicted in Figs. 11�b� and 11�c�.
For this model, we again obtain reasonable agreement be-
tween the coupled-maps simulations �not shown� and the
predictions based on the quantity b�DIS2 ,DIS3 ,DIS4� derived
from the blocking condition �Fig. 11�b��. We find that, in
both cases, the conditions are most favorable for block when
DIS3 and DIS4 are relatively large and DIS2 is near zero.
Specifically, the maximum in the number of blocks seen
in the simulations occurs at �DIS2 ,DIS3 ,DIS4�=DImin

+ �0,59,42� ms, while the maximum in b occurs at DImin

+ �0,53,53� ms. Thus both cases suggest that a short-long-
long-short pattern in DIS2 through DIS5 is most conducive to
creating type-II block. The range of values of DIS3 and DIS4
defining the cylindrically shaped set of points exhibited in
Fig. 11�b� substantially overlap the values of DI for which
a��DI��1 �39 ms�DI�72 ms�, shown in gray in Fig.
11�a�, facilitating the instances of block observed for combi-
nations of DIS3 and DIS4 in this range.

We can obtain some understanding of why this pattern
appears by careful examination of the S5 type-II blocking
condition �9�. One key lies in realizing the importance of the
slope of the APD restitution curve at DIS4. We observe that
a��DIS4� appears in all three of the terms that have the po-
tential to cancel the negative first term on the right-hand side
of Eq. �9�. Thus, it is important that DIS4 be chosen so that
a��DIS4� is large and positive. For the model No. 3 APD
restitution function, this occurs for DIs around 50 ms, near
the middle of the v��DI��1 region shaded in gray �see Fig.
11�a��. The steepness of the APD restitution function at this
point is so important that it outweighs the fact that the first
term in Eq. �9� is quite negative for this DI, owing to the
associated fast CV, v�50 ms�, compared to v�DImin�. The ap-
parent necessity to choose DIS4 so that v�DIS4� is large also
implies that the second term in Eq. �9� cannot help create
block; it can only hurt. This is because the difference in
inverse velocities in this term can, at best, be made only
marginally negative, since 1/v�DIS4� is so small. So, we
choose DIS3 large enough so that v�DIS3��v�DIS4� to mini-
mize the damage, and move on the third term. Here we find
that choosing DIS2 small can really help to produce block,
because then v�DIS2� is small and v�DIS3� is large, which

makes the difference in inverse velocities in the third term
large and positive. Furthermore, if we choose DIS3 so that it
also falls in the steep part of the APD restitution curve, we
can make the amplifying factor a��DIS3� as large as a��DIS4�,
resulting in a very large and positive third term. Of course,
choosing DIS2 small also implies that the fourth term will be
relatively inconsequential, because the APD restitution func-
tion is flat at small DI, and thus a��DIS2� is small. Thus, we
see that the main contributor to producing type-II block in
model No. 3 is the third term in Eq. �9�.

We can see this block mechanism at work in Fig. 11�c�.
Since the APD restitution function is flat at short DIs, such as
DIS2, the S2 APD is roughly constant in x, despite the fact
that a gradient in DIS2 exists. The leading and trailing edges
of the S2 wave therefore travel at approximately the same
velocity. A spatial gradient in DIS3 is therefore created by the
long DIS3 since it causes the S3 leading edge to move faster
than the leading and therefore the trailing edge of the S2
wave. We then observe that this gradient in DIS3 is amplified
by a��DIS3�, creating larger gradients of the S3 APD and
DIS4. The gradient in DIS4 is then amplified again by
a��DIS4�, creating an even larger gradient in the APD of S4.
We see that, even though this gradient is being added to the
relatively fast-moving leading edge of the S4 wave, the re-
sult is a slow enough moving S4 trailing edge that the S5
action potential can run into it, creating type-II block. Again,
we observe that block is occurring via the mechanism de-
picted in Fig. 4.

E. Results from model No. 4: Comparison to Fox et al.

Finally, we checked to see whether our theory was con-
sistent with the simulation results obtained by Fox et al. �13�.
Accordingly, we defined the APD and CV restitution func-
tions of model No. 4 to be exactly those used by Fox et al.
�13� for their default case. We also programmed the search
algorithm to tabulate the total number of type-II blocks that
were found in coupled-maps simulations of model No. 4 for
each �CLS2 ,CLS3� pair �rather than each CLS2 ,CLS3 ,CLS4

combination� to allow direct comparison with similarly pre-
sented data in their paper. The results of this tabulation are
shown in Fig. 12�c�.

To allow direct comparison to the predictions of the
blocking condition, we summed positive values of b over
DIS4 to yield a quantity that only depends on the S2 and S3
stimulus timings

B�DIS2,DIS3� � 	
DIS4=DImin

DImin+100 ms

b�DIS2,DIS3,DIS4�

�H�b�DIS2,DIS3,DIS4�� , �20�

where H�	� is the Heaviside function, defined to be 1 if 	
�0 and 0 otherwise. The upper bound of the sum was cho-
sen large enough to comfortably include all likely blocks for
all combinations of DIS2 and DIS3 examined. When B was
evaluated for all combinations of DIS2 between DImin and
DImin+20 ms and DIS3 between DImin and DImin+185 ms,
we obtained the colorplot shown in Fig. 12�d�.
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To compare the results displayed by the two plots in Figs.
12�c� and 12�d�, we note the left edges of the two plots
correspond to one another, since in both cases, type-I block
of the S2 stimulus occurs to the left of these edges, given that
CLS2� �CLS2�min and DIS2�DImin both by definition cause
type-I block. Also, the upper boundary of the type-I block
region of Fig. 12�c� corresponds to the bottom edge of Fig.
12�d� �where DIS3=DImin�, since again both define the
boundary below which type-I block of the S3 stimulus oc-
curs.

Comparison of Figs. 12�b�–12�d� shows that the distribu-
tion of type-II blocks yielded by our simulations and those of
Fox et al. �13� agree reasonably well with the shape of the
function B�DIS2 ,DIS3�. The maximum number of blocks oc-
curred at �DIS2 ,DIS3�=DImin+ �0,50� ms in the simulations
of Fox et al. and at DImin+ �0,57� ms in our coupled maps
simulations, while the peak in the function B�DIS2 ,DIS3� oc-
curred at �DIS2 ,DIS3�=DImin+ �0,42� ms. The widths of the
peak in all three cases are comparable, being approximately
8 ms in the DIS2 direction, and 35 ms in the DIS3 direction in
each case. The slight disparities obtained might be accounted
for by the fact that Fox et al.’s simulations include memory
and electrotonic effects, whereas ours do not, and by the fact
that the quantity B is expected to be correlated, but again not
strictly functionally related to the number of type-II blocks.

VI. INCLUSION OF MEMORY

It is widely recognized that the APD does not depend just
on the previous DI but also on other quantities that, in turn,
are determined by other aspects of the previous history of the
cells. Thus, it is important to extend our theory to incorporate
the effects of the other quantities, collectively often called
“memory,” into the APD restitution dynamics. Here, we take
a first step into examining the effects of memory by deriving
the basic equations and considering the quantity analogous to
a��DI�, the APD restitution function slope. Inclusion of
memory typically results in equations of the form �e.g., Otani
and Gilmour �21��,

APDn = a�DIn−1,Mn� , �21�

where M is a vector of memory dynamical variables whose
dynamics is determined by

Mn+1 = m�Mn,APDn,DIn� �22�

and a and m are the generalized APD restitution function and
a “memory” function, respectively. Other slightly different
forms of these equations are possible; for example, see Cain
et al. �17�.

We can construct the equation analogous to Eq. �5� by
subtracting 1/v�DIn�x�� from both sides of Eq. �2�, substitut-
ing Eq. �3�, and differentiating Eqs. �21� and �22� with re-
spect to x. We obtain,

dDIn

dx
�x� =

1

v�DIn�x��
−

1

v�DIn−1�x��
−

dAPDn

dx
�x� , �23�

dMn+1

dx
�x� =

�m

�M

dMn

dx
+

�m

�APD

dAPDn

dx
+

�m

�DI

dDIn

dx
,

�24�

dAPDn

dx
=

�a

�DI

dDIn−1

dx
+

�a

�M

dMn

dx
, �25�

where the derivatives of m are evaluated at
�Mn�x� ,APDn�x� ,DIn�x�� and the derivatives of a are evalu-
ated at �DIn−1�x� ,Mn�x��. By substituting Eq. �25� into Eqs.
�23� and �24� and Eq. �23� into Eq. �24�, we find that Eqs.
�23� and �24� may be written as

�
dDIn

dx

dMn+1

dx
� = � 1

v�DIn�x��
−

1

v�DIn−1�x���� 1

�m

�DI
�

− A · �
dDIn−1

dx

dMn

dx
� , �26�

where A is a square matrix whose elements are algebraic
combinations of the derivatives of the functions a and m
appearing in Eqs. �23� and �25�.

We observe that repeated iteration of Eq. �26� leads to an
equation analogous to Eq. �9�, with A playing the role of a�.
In turn, we observe that A is the linear operator that deter-
mines how perturbations in �DIn ,Mn+1� propagate from one
beat to the next under the constraint of constant cycle length.
�This can be seen by noting that A respects the relationship
d�DIn+APDn� /dx=0 from Eq. �23�.� Thus, we can anticipate
that the amplification produced by repeated application of A
may be most closely tied to the dynamic stability of APDs
under conditions of constant pacing, even though A is not
being evaluated at steady-state values for �DI,M�, which
would technically be necessary for the comparison to be rig-
orous.

We also note that the quantities contained in the vector M
need not be memory quantities as normally defined; the deri-
vation is sufficiently general that M may be any set of dy-
namical variables, for example, gating variables, ionic con-
centrations and/or the membrane potential at some specified
time, that, along with DI, determine the next values of them-
selves and the next DI. Thus, to the extent that such a system
can be constructed, it is more generally true that the dynami-
cal stability of perturbations under situations of constant pac-
ing including, in particular, alternans, is closely related to the
likelihood of type-II block, through the stability of the matrix
A, evaluated for the values of �DI,M� associated with each
action potential generated at the stimulus site.

VII. DISCUSSION AND SUMMARY

In this paper, we have derived a mathematical condition
that will guarantee that an action potential wave, launched
from one end of a spatially one-dimensional system, will
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block at some nonzero distance away from the stimulus site.
The condition, that dtr /dx�1/v�DImin� at the stimulus site,
simply says that block at-a-distance, also called type-II
block, will occur if the velocity of the trailing edge of the
previous wave is smaller, when evaluated at the stimulus site,
than the velocity at which waves travel when the preceding
DI is the smallest for which propagation is possible
�v�DImin��. This condition, which we call the “blocking con-
dition,” is valid with only relatively modest restrictions: �1�
the conduction velocity must be solely a function of the pre-
ceding diastolic interval �i.e., v=v�DI��, �2� propagation fail-
ure occurs below a well-defined diastolic interval DImin, and
�3� the velocity of the trailing edge of the preceding wave
must be a continuous function of x.

These restrictions guarantee that leading edge trajectories
cannot cross, which allows us to construct a topological ar-
gument for why the blocking condition must result in type-II
block �see Fig. 4�. In turn, the topological nature of this
condition provides it with a measure of robustness—that is,
the condition remains valid under a variety of improvements
of the underlying model. In particular, the inclusion of
memory and electrotonic effects in the determination of the
APD, as defined in Echebarria and Karma �6�, have no effect
on the validity of the blocking condition. Electrotonic effects
modifying the leading edge will affect the condition, how-
ever, since then the leading edge velocity depends on the
states of nearby cells, and so is no longer solely a function of
the previous DI. While the condition is fairly general, we
reiterate that it is only a sufficient condition for type-II
block; type-II block can occur through mechanisms other
than the one we concentrate on here.

To study some of the consequences of the blocking con-
dition, we evaluated it for a case of interest—that of a small
number of premature �i.e., short cycle length� stimuli being
applied to a system that has settled down to a steady state
following a series of stimuli applied with a constant, longer
cycle length. The form of the blocking condition �9� reveals
a clear mechanism for type-II block for this case. Type-II
block tends to occur when differences in the CVs between
pairs of consecutive waves are amplified sufficiently by steep
slopes of the APD restitution function to slow the trailing
edge of one of the waves so that the following wave can
collide with it. Thus, block at-a-distance is most likely to
occur when the inter-stimulus intervals are chosen to maxi-
mize �1� the difference in CVs of each consecutive pair of
waves and �2� the slopes of the APD restitution function at
each DI interval. The ideal situation is for the set of DIs
corresponding to the steepest part of the APD restitution
curve to include a complete range of available CVs. It is then
possible to choose a series of DIs from within this range that
yields a set of maximal consecutive CV differences, each of
which is then amplified one or more times by the steep part
of the APD restitution curve. This situation was essentially
the case illustrated by model No. 1. More generally, how-
ever, some compromise must be made in the choices of DI so
as to hit the steep part of the APD restitution curve as often
as possible, while still generating as many large velocity dif-
ferences as possible, as was the case in model No. 3.

It is not too difficult to see why this kind of prescription
works. Under normal circumstances �i.e., in the absence of

supernormal conduction, when v��DI��0�, the velocity of
the leading edge following a DI equal to DImin is slower than
the velocity following any other propagating value of DI.
Therefore, to satisfy the blocking condition, a positive spatial
gradient in APD must be established to slow the velocity of
the trailing edge relative to the leading edge. This APD gra-
dient may be generated by first creating a gradient in DI by
launching two successive waves with different leading edge
velocities. �Before the APD gradient is generated, the trailing
edge velocity of the first wave is equal to its leading edge
velocity. The difference between this velocity and the leading
edge velocity of the second wave then creates the gradient in
DI.� This DI gradient appears in the following APD gradient
in amplified form, with amplification provided by the steep-
ness in the APD restitution curve. A negative version of this
APD gradient is then transferred to the next DI gradient, to
which is added any new DI gradient produced by the differ-
ence in the next leading edge velocity and the previous one.
This process of repeated amplification by steep APD restitu-
tion and addition of new velocity differences continues until
the APD gradient is large enough to make the trailing edge of
the corresponding wave slow enough to allow the blocking
condition to be satisfied, permitting the next wave, if
launched with small enough DI, to “run into” the preceding
trailing edge.

It is interesting that the slope of the APD restitution curve,
which plays a central role in determining whether cells un-
dergoing constant pacing exhibit alternans, also plays an im-
portant role here. As discussed in the Introduction, the sus-
ceptibility of cardiac tissue to alternans is also thought to
render it vulnerable to action potential block, allowing pos-
sible subsequent development of spiral waves, spiral wave
breakup and fibrillation. Although there is obviously a con-
nection between the two types of dynamics, we note that
there are also important differences. First, the appearance of
the APD restitution curve slope does not arise from the con-
sideration of linear �that is, small� perturbations around a
steady state as it does in the theory of alternans. Our theory
is fully nonlinear in this respect—it remains valid for large
perturbations in the pacing cycle length and diastolic inter-
val. Second, there exists a critical slope for APD restitution
function in the theory of alternans. When the slope equals or
exceeds 1, sustained alternans becomes possible. In our
theory of type-II block, 1 is still an important number, since
any time a DI is chosen so that the APD restitution slope
exceeds this number, amplification of all the existing differ-
ences in velocities occurs. However, it is not essential that
the slope be greater than 1—as we have seen from our study
of model No. 2, if the differences between pairs of consecu-
tive velocities are large enough, and the leading edge veloc-
ity of the last propagating wave is close enough to v�DImin�,
type-II block on the next wave is still possible, even if the
slope is less than 1. It is also possible for type-II block to not
exist even though the slope of the APD restitution function
exceeds 1. The obvious example is when v�DI� is constant so
that differences in velocities cannot be created.

Similar statements may be made when memory is present.
In the theory of alternans, a matrix relates perturbations
about a steady state from one stimulus to the next. We find
that the same matrix is involved in the amplification process
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that leads to type-II block. However, again, it is clear that the
presence of eigenvalues that are larger than 1 in absolute
value, which signals the onset of alternans in the case of
constant pacing, does not necessarily mean that type-II block
is possible. We also note that this matrix is not evaluated at
steady state values in our theory, as it is in linear alternans
theory.

Although an APD restitution slope greater than 1 �or a
stability matrix with eigenvalues greater than 1 in absolute
value� is neither necessary nor sufficient for type-II block to
occur, it does in some sense increase the probability that
block will occur, since repeated amplification of critical
quantities leading to block is now possible. Accordingly, the
appearance of alternans could serve as a diagnostic signal
telling us that the tissue is more likely to be susceptible to
type-II block. Thus, to the extent that type-II block may be
related to clinically significant arrhythmias, the presence of
alternans may be useful in alerting caregivers that conditions
are favorable for the development of those arrhythmias.
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APPENDIX: ALGORITHM USED TO SEARCH
FOR TYPE-II BLOCK

The search algorithm used to look for type-II blocks was
designed so as to skip over combinations of CLS2 through
CLS5 that are known not to produce block. The upper limits
of these cycle lengths were also chosen in a judicious manner
designed to capture all the “interesting” type-II block behav-
ior. Specifically, the algorithm ran simulations for values of
CLS2 between the smallest value that did not produce imme-
diate block of the S2 wave at the stimulus site �called type-I
block�, and a value 20 ms longer, in 1 ms increments. For
each of these values of CLS2, the algorithm looked for

type-II block of S3, starting with the smallest value of CLS3
that did not produce type-I block of S3, and increasing in
1 ms increments. This algorithm considered a block to be of
type II if the wave was able to travel more than 0.1 mm �1
cell� before blocking, and type-I otherwise. Once S3 waves
were able to travel across the system without type-II block,
the algorithm continued to increase CLS3 in 1 ms steps, look-
ing for type-II blocks of S4 and S5. The increments contin-
ued until either no type-II blocks of S4 or S5 were found and
CLS3 had already been increased 70 ms, or until CLS3
reached 300 ms. To find these S4 and S5 type-II blocks, the
algorithm applied the same procedure to CLS4, as was just
described for CLS3: The algorithms searched for type-II
blocks of S4 starting with the smallest value of CLS4 that did
not result in type-I block of S4 with subsequent increments
in 1 ms steps until type-II block of S4 no longer occurred.
The algorithm then continued to increment CLS4, looking for
S5 type-II blocks, ending its search when either CLS4
=400 ms, or after CLS4 was 50 ms larger than its first value
for this �CLS2 ,CLS3� combination. Finally, the algorithm
searched for the aforementioned type-II blocks of S5 by
starting with the minimum value of CLS5 that did not pro-
duce type-I block, and continuing until the S5 wave propa-
gated across the system.

The precise definitions of the quantities appearing in Fig.
12�c� were based on the code’s operation: �CLS2�min is small-
est value of CLS2 that does not cause the wave generated by
S2 to exhibit type-I block, given that the preceding cycle
length is the steady state cycle length, 500 ms, and �CLS3�min

is defined as smallest value of CLS3 that does not cause
type-I block of the S3 wave, given that the preceding cycle
length is �CLS2�min. The precise definition of the number of
blocks for a given pair of cycles lengths CLS2 and CLS3
appearing in Fig. 12�c� is given as: the number of combina-
tions of CLS4 and CLS5 that yield type-II block of the S5
wave, plus the number of values of CLS4 that cause the S4
wave to exhibit type-II block, plus 1, if the S3 wave termi-
nates in a type-II block.
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